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Abstract—The efficiency of convolutional neural networks
(CNNs) is dictated by the computationally intensive convolution
operations. Thereby, extensive research has sought to alleviate
the cost of convolution. In this work, we opt to skipping the
ineffectual outputs, which can be used along with the other
approaches such as quantization and pruning. Contrary to the
previous works that skip ineffectual inputs, i.e., zero activations
and weights, we predict and skip the ineffectual outputs by
exploiting two key attributes of the state-of-the-art CNN archi-
tectures: ReLU (which filters out the negative outputs) is the
widely-used activation function, and max-pooling (which discards
the non-max outputs) is the commonly used down-sampling
layer. To realize that, we propose TermiNETor, which breaks
the convolution to bitwise shift-and-add operations. During the
inference, weights are processed bit by bit, whereby TermiNETor
uses a simple heuristic to predict whether the final output will
be ineffectual. Upon prediction, TermiNETor terminates the
convolution for ineffectual outputs. We propose a calibration
flow that takes the prediction-based forward propagation into
account and realizes more accurate predictions. In addition,
we propose a novel hardware architecture to take advantage
of early termination by feeding new convolution to the re-
leased processing elements. We demonstrate the effectiveness of
TermiNETor on various networks and datasets. Experimental
results show that our framework achieves up to 1.7× reduction
of operation count compared to non-skipping baseline without
accuracy degradation. TermiNETor accelerator, augmented with
the skipping flow, improves the average energy efficiency by
3.84× over the zero weight/input skipping accelerator SCNN,
and by 1.98× over FuseKNA which skips zero inputs as well
as repetitive computations in a bit-serial manner. The proposed
architecture exhibits good throughput and energy consumption
scalability by increasing the processing elements, meaning that it
can also target high-performance applications while preserving
the energy efficiency.

I. INTRODUCTION

A plethora of studies have aimed to alleviate the compu-

tation and energy cost of deep neural networks (DNNs) by

hardware-friendly algorithmic innovations such as weight or

filter pruning [1], [2], [3], and weight or activation quantization

[4], [5], [6], [7], [8]. More strict hardware techniques skip the

operations with ineffectual operands, i.e., zero weights and/or

input activations1 [9], [10], [11]. Some studies even exploit

bit-granular sparsity in the weights or inputs by breaking the

operations into bit level and skipping if either operands’ bit is

zero [12], [13].

The sparsity-aware accelerators aim to skip the zero weights

and/or inputs, where the zero inputs are produced by the pre-
1We will refer to input activations as inputs, and output activations as

outputs.
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Fig. 1. Ineffectual outputs due to ReLU and max pooling.

ceding ReLU layer (Fig. 1). Skipping the ineffectual outputs

is more beneficial than the ineffectual inputs as the number

of zero outputs is more than zero inputs (most of the zero

outputs are naturally discarded from the next layer’s inputs

after passing through the pooling). Several studies opt to

skip the computation of negative outputs. The majority of

these works split the input or weight bits into two significant

and insignificant parts [14], [15], [16], [17]. The result of

computation using the significant bits creates a mask that

reveals which outputs need full-bit computation. Instead of

splitting into bits, the work in [18] partitions the sorted weights

into small groups and selects a representative weight from

each one. The result of convolution (dot-product) with these

select weights and the corresponding inputs determines the

potentially negative outputs.

In these studies, the prediction procedure, i.e., splitting

of bits or partitioning the weights, is determined statically
while the inputs’ statistics can vary significantly from image

to image (e.g., [8] points out this observation and proposes

dynamic quantization based on input sensitivity). Thus, such

prediction approaches have to be pessimistic to retain the

accuracy, which results in low performance gain, e.g., ≤ 30%
in relatively complex networks [18], [16], [17]. Better im-

provement (∼60%) is reported in [15]. However, [15] uses

non-complex networks as well as high bitwidth for the weights

and activations, which make the negative output prediction

simpler. Also, when the bitwidths are already low, the impact

of LSB bits becomes substantial, i.e., the likelihood of output

sign change (misprediction) by continuing the operation on

the four LSB bits of 8-bits weights is higher than eight LSB

bits of 16-bits weights (as 2−5 + · · · > 2−9 + · · · ).

In this work, we propose algorithmic innovation and hard-

ware support, dubbed TermiNETor, for dynamically predict-

ing and skipping the ineffectual outputs, including negative
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outputs preceding the ReLU layers and non-max outputs

preceding the max-pooling layers. To this end, we leverage

bit-serial operation whereby a convolution, represented as dot-

product of flattened activations and weights ′A ·W ′, is split to∑
A·(Wi × 2i) over the weight bits Wi. After processing an

ith bit of the weight vector, TermiNETor checks if the partial
output1 falls behind a designated threshold. This threshold

varies for bit indexes; partial output produced using the initial

(MSB) weight bits needs a more conservative threshold to

ensure safe termination since the probability of a negative-to-

positive flip of the output is higher as we move from MSB

towards the LSB. The threshold also varies between the layers

of a network.

There are three principal differences between TermiNETor
and previous works: (i) TermiNETor uses bit-slicing and

can flexibly terminate the operations at any index upon

prediction, and notably, (ii) TermiNETor operates in the
granularity of output level, meaning that it can terminate the

operations for a small group of output pixels independent of

the others, and (iii) Computations used for mask generation

are reused for effective or useful convolutions; obliterating

the computation overhead of standalone mask generation.

Nevertheless, realizing a non-pessimistic threshold mechanism

that universally works for various inputs is challenging. The

algorithmic contribution of TermiNETor is to make such a

partial-output-based prediction mechanism viable. Moreover,

architectural support to take utmost performance and energy

gain of these fine-grained terminations with high resource

utilization is as critical, which is the focus of TermiNETor’s
hardware novelty.

II. INEFFECTUAL OUTPUT SKIPPING

Convolutional layers are the core building block of DNNs

and contribute to > 99% of these networks computations

[19]. These layers are followed by a nonlinear activation

function, which has significant impact on the accuracy of

these networks. The rectified linear unit (ReLU), simply

defined as f(a) = max(0, a), is the widely-used and most

successful activation function and yields better and more

consistent performance than others such as hyperbolic tangent

or augmented alternatives like leaky ReLU [20]. The ReLU

function introduces sparse representations, i.e., zero output

activation values, into the network and steers the observation

that computations spent for the convolutions that generate

negative outputs are unnecessary or ineffectual.
Besides the convolution and nonlinear activation layers, a

downsampling operation is used intermittently to reduce the

dimensionality of the output activation map. The downsam-

pling is achieved via either a patch-wise (or window-wise)

max-pooling or an average-pooling layer. In the former case,

the pooled activation map highlights the largest feature of

the patch and has been found to work better than average

pooling for computer vision tasks like image classification

[21]. In a 2 × 2 patch, three out of the four activations are
1A partial output is the dot-product of the whole activation vector and

sub-bits of the whole weight vector (while a partial sum refers to sub-vectors
dot-product result).
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Fig. 2. Ineffectual outputs of VGG16 on CIFAR-100 images.

discarded through the pooling operation. Therefore, another

key observation is that 75% of the computations spent for the

convolution operations that are preceded by a max-pooling

layer are ineffectual.

Fig. 2 shows the percentage of ineffectual outputs for

different layers of the VGG16 network on CIFAR-100 images.

In this case, ineffectual outputs account for 61.8% of the

produced outputs. The figure also shows the number of pre-

dicted ineffectual outputs by TermiNETor after using the first

three bits (towards MSB) of the weight. Certain convolution

layers are followed by a max-pooling layer, wherein > 80%
of the layer outputs become ineffectual. The percentage of

ineffectual outputs increases with the image size since a major

portion of such images consists of a background, which is

filtered out by the convolution. For instance, in the same

VGG16 network, 77.4% of the outputs become ineffectual

for 224 × 224 ILSVRC-2012 images. We exploit the pres-

ence of ineffectual outputs which are useless for the next

layer’s operations to improve the inference performance by

skipping the computations that lead to such outputs. This

is accomplished by predicting the ineffectual outputs using

the proposed weight-bit-serial TermiNETor framework and

architectural support to skip them with the fine granularity for

maximal performance gain.

A. Inference Framework

In TermiNETor, the weights and input activations are

quantized to standard 8-bits INT8 representation, bit 7 (MSB

or sign) to bit 0 (LSB). Nevertheless, our bitwise prediction

can be indeed employed with any > 1-bit quantized model

(though the efficiency gain will vary). Note that previous work

such as [15] use over-provisioned bitwidths (e.g., 16) which

makes the prediction much simpler. For instance, they can

split the activations and/or weights into two 8-bits pieces and

accurately predict the output sign by using 8-bits of each (75%

effective operation reduction) since the lower 8-bits, in most

cases, only adjusts the precision of the output rather than

flipping the sign. In contrast, TermiNETor operates on the

weights bit by bit and uses the complete 8-bit activations for

each weight bit. Generating one convolution output begins

with the MSB weight bit (bit 7) and continues till bit 0 of

the weight.

Since only one bit of weights are processed at a time,

the partial output is computed using the typical shift-and-

add multiplication similar to bit-serial-based works [12], [13].

Regardless of output skipping, an advantage of such an ar-

chitecture over conventional fixed-point designs is supporting
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Fig. 3. Early output prediction of TermiNETor.

arbitrary and layer-wise weight quantization [22]. A typical

convolution takes eight iterations. The key idea is to use the

partially computed outputs after C cycles of the bitwise shift-

and-add operations and predict (i) if the final output activation

is leaning towards a negative value, and (ii) if the convolution

output ends up unused because of a succeeding 2 × 2 max-

pooling window. Accordingly, if we predict an ineffectual

output at the C = 3rd cycle (i.e., after bit index 5), we

can save five cycles by terminating the subsequent bitwise

computations. Note that consuming three bits for prediction is

principally different from 3-bits weight quantization. Unlike

quantization, here, the model still operates with 8-bits weights

for useful outputs and fewer bits are only used for ineffectual

outputs. Our bitwise prediction can be employed with any

> 1-bit quantized model (though the efficiency gain will vary).

Fig. 3 depicts TermiNETor’s inference scheme. TermiNETor
uses a masking operator to skip the convolutions that lead to

ineffectual outputs. The mask is being updated by adding more

skippable outputs after processing a new weight bit index.

Formulation: Consider the bitwise generation of a convo-

lution output activation (pixel) Op,q at location (p, q) of a

certain output channel M (being produced by filter M ). Each

convolution is multiplication of a three-dimensional filter with

the corresponding part of the input feature map, which can be

shown as a flattened dot-product (vector-vector multiplication).

We start with the i = 7th (MSB) of the weight and build up

the partial output using the shift-and-add operation (the first

bit determines the sign). Notice that in INT8 representation,

the weights are considered 8-bits integers.

Op,q = A ·W [7 : i] =

0∑

i=7

A · (W (i) × 2i ×−1i==7)

If i ≤ 8−T (i.e., after processing T weight indexes without

skipping), we start masking the outputs that are predicted to be

negative. Nevertheless, the partial output Op,q is incomplete

and its sign might be changed if more indexes are processed.

Fig. 4 demonstrates such a scenario. After the first bit, A·W [7 :
7] is negative but it increases and eventually its sign flips after

using four bits (A ·W [7 : 4]).

We observed that adding a Δp,q ≥ 0 term that accounts

1 0 1 1 ⋯A1=0.3 × 
0 1 1 0 ⋯A2=0.1 × 
0 1 0 1 ⋯A3=0.25 × 

–38.4 0 9.6 4.8
0 6.4 3.2 0
0 16 0 4–38.4 –16 –3.2A∙W

W1
W2
W3

–27 26 25 24

5.6
Fig. 4. An example of negative-to-positive sign flip.

Algorithm 1: TermiNETor calibration framework

Require: Pretrained weights Θ0, train data = {X, y}
1: model ← SGD(Θ0, X, y)
2: for each epoch in total epochs do
3: for each layer � in model.layers() do
4: for each bit idx in [7, · · · , 0] do
5: if bit idx < 8− T � then
6: if �.index = 1 then
7: Y � += �.forward(X)
8: end if
9: if �.index > 1 then

10: Y � += �.forward(Y �−1)
11: end if
12: end if
13: mask� ← genMask(Y �, bit idx, �.pool)
14: if bit idx ≥ 8− T � then
15: if �.index == 1 then
16: Y � += �.forward(X,mask�)
17: end if
18: if l.index > 1 then
19: Y � += �.forward(Y �−1,mask�)
20: end if
21: end if
22: end for
23: end for
24: Θt+1 ← SGD(Θt)
25: end for

for the residual convolution yields better prediction. We can

think of Δp,q as an inexpensive positive bias term that is easy

to compute and is also spatially aware of the input activation

map. Thus, we have:

if i ≤ 8−T and Op,q+Δp,q < threshold ⇒ maskp,q = 1 (1)

Essentially, Δp,q ensures that the partial output is negative

enough to avoid potential sign change. Also for the convolu-

tion layers that are followed by a max-pooling, we mask the

outputs that are predicted to be ineffectual (i.e., are smaller

than the maximum element of the pooling window P):

if i ≤ 8−T and (p, q) �= argmaxP(p,q) ⇒ maskp,q = 1 (2)

B. Model Calibration

We observe accuracy degradation when the inference pro-

cedure of TermiNETor, explained above, is performed using

a baseline pretrained model. This is because the pretrained

model is not tuned for the imposed inference approximations;

similar to, e.g., quantization wherein the weights require post-

tuning. Also, the hyperparameters T (that allows skipping after

a particular weight bit index) and Δ (prediction bias) are layer-

dependent and requires a rigorous design-space exploration.

To address the former issue, we calibrate the pre-

trained model to compensate the approximations imposed by
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Fig. 5. Percentage of false negative for two layers of a pretrained VGG16
model on CIFAR-100 dataset. The X-axis is the number of used weight bits.

TermiNETor’s inference, summarized by Algorithm 1. Dur-

ing the calibration process, the model tunes the weights toward

the solution space that is highly sparse in the lower portions of

the 8-bits weights. Such a weight calibration makes the lower

portion of the weights to be less impactful as compared to the

upper portion. Notice that the calibration procedure is different

from quantization. In quantization, cutting the discarded LSB

bits does not affect the model accuracy. However, in our case,

the LSB bits still play a major role to retain the model accuracy

(which we further analyze in Section IV); by calibration, only
the probability of negative-to-positive sign flip is decreased

.
Algorithm 1 processes the weight bits one by one (line 4) and

updates the forward propagation outputs of the layer � (denoted

by Y �) after each bit. If more T � or more bits are consumed,

the algorithm applies the mask on the forward propagation

values, which replaces the masked values with 0.

C. Hyperparameters Exploration

Minimum prediction index T : In bit-serial processing of

the weights, the confidence of outputs estimation improves

as we move from the MSB bit towards the LSB bit. The

key metric to evaluate the confidence of early termination is

the false negative percentage, i.e., the percentage of outputs

that are predicted negative but would turn to positive if all

the weight bits are used. As shown in Fig. 5, the percentage

of false negatives is layer-dependent, and it decreases as we

consume more bits. Therefore, the value of T is first derived

from the plots of the pretrained networks, and then we use

model calibration to mitigate the accuracy loss. For example,

T = 4 might be acceptable for layer 4 (the left figure) but it

can incur accuracy loss for layer 13.

Mask generation and bias term Δ: The partial output

prediction mechanism uses a simple addition and comparison.

It takes the partial output sum, adds a pre-computed value Δ
,

and checks if the result is greater than a desired threshold. The

pre-computed value Δ is unique for each output sum, while

the threshold is the same for all the outputs of a layer. Both the

parameters are computed offline and are loaded for comparison

during run-time. To ensure that minimum number of outputs

will use all the weights’ bits, the network is calibrated to

make the weights’ bits more sparse, i.e., more bits in a weight

parameter are zero. This helps in obtaining a threshold value

that gives a higher prediction confidence corresponding to each

weight bit. As we showed in the example of Fig. 4, zero bits do

not affect the partial output. At the same time, the more zeroes

present in the weight, the higher the probability of terminating

Fig. 6. Weight histograms before model calibration (left) and after (right) for
two layers of VGG16.

that computation earlier. Fig. 6 shows the impact of model

calibration on the distribution of two representative layers of

VGG16. The histogram is sparse around certain values which

have large number of ‘1’ bits as the frequency of such values

is minimized in the calibrated model.

For every layer of the network, the input activations cor-

responding to the training data set are analyzed (offline) by

taking their product with the kernel weights to determine an

appropriate bias Δ(p,q) for each output of the layer. After this,

the threshold value (see Equation (1)) is obtained heuristically

by analyzing the output predictions considering the obtained

Δ(p,q). We performed multiple experiments with the partial

output prediction mechanism and realized that the prediction

mechanism should not be employed as soon as the partial

outputs are generated, since initially the confidence in the

prediction is quite low and degrades the accuracy.

To improve hardware utilization, TermiNETor also im-

plements group-termination, whereby processing a chunk of

adjacent outputs (pixels with the same (i, j) position but dif-

ferent channels) are terminated together. We elaborate group-

termination in Section III.

III. TermiNETor ARCHITECTURE

A. Overview

The efficiency of the TermiNETor architecture is critical

since, on the one hand, the processing elements should be able

to operate on generating a new output upon early-terminating

a particular output (rather than simply staying idle to simplify

dataflow), and on the other hand, data reuse is a key efficiency

factor which may contradict the first desideratum. This section

elaborates on how TermiNETor can meet both criteria.

Fig. 7 shows the overview of TermiNETor datapath. It

comprises a two-dimensional array of processing elements

(PEs). The baseline architecture is an 8×16 array to consume

a comparable power to previous works, but the architecture

is scalable as we examine in Section IV. Each input lane

broadcasts an input sub-image brick by brick to all the PEs in

the same row (we use lane to distinguish between logical and

physical memory entities). A brick (input, weight, or output)

is composed of consecutive elements in the Z axis, e.g.,
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Fig. 7. Overview of TermiNETor’s baseline architecture.

channels of an image. Similarly, each weight lane broadcasts

a unique filter (occasionally, up to three different filters) at

a time to all the PEs of the same column. Therefore, a PE

row produces the same output indexes of different channels.

The operations are bit-serial on the weights, so the weight

lanes only transfer one bit of each weight. In our setting, a

brick consists of eight elements. Therefore, each activation

lane supplies 8× 8-bits inputs, and each weight lane provides

eight single bits (occasionally 16 or 24) of different weights

(i.e., one bit of each). The activations and weights correspond

to the same indexes; hence, the PEs can perform immediate

MAC operations, which in practice is just a shift-and-add

operation. The operations are orchestrated in a fashion that

all PEs of a row terminate at the same time and move to

the next sub-image, independent of the other rows, and only

infrequent halts are needed to coordinate different PE rows.

TermiNETor benefits from multiple levels of data reuse and

sharing to reduce both on-chip and off-chip memory accesses,

which we elaborate in subsection III-C.

B. Dataflow

TermiNETor partitions an X × Y × C input feature map

into multiple x× y×C sub-images, as shown in Fig. 8. Each

sub-image is stored in a separate input lane and is shared with

all PEs of a row. The values of x and y depend on the PE’s

local register file (RF) size as well as the number of filters

a PE receives. For instance, with 128 filters, each PE of the

8 × 16 array will visit 128
16 = 8 filters. Thus, an RF with

a depth of 32 words can allocate four words per filter (i.e.,

2× 2 output pixels for eight channels); hence, the sub-images

can be up to 4×4×C assuming filters of shape 3×3×C with

sliding stride of 1. The number of sub-images can be more

than the input lanes (PE rows). In that case, the remaining sub-

images will be processed in multiple similar iterations after the

currently stored sub-images are processed for all the filters.

TermiNETor processes the stored sub-images as follows.

First, brick 1 of filters 1 to 16 are loaded into PE columns 1

to 16, respectively. As alluded above, a brick consists of eight

consecutive elements in the Z axis (channels). Operating at the

brick level avoids local data storage and simplifies the compute

Input Brick

9 2 1
F16, W[7]

9 2 1
F16, W[0]

9 2 1
F1, W[7]

9 2 1
F1, W[0]

Filter Brick

2341718 56782122 91011122526 131415162930
1

Input Image

Fig. 8. A sample input and filters for TermiNETor dataflow explanation.

elements. Initially, all PEs of a column share the same filter

brick. The filters’ bricks contain eight weights, but only one

bit of each. Hence, only W [7] of all weights are loaded at

this stage. We pack the same index of the weights in the same

memory word for regular memory accesses. The sub-images

are scanned from the bottom row toward the top. Overlapping

bricks of adjacent sub-images will be transferred from one

input lane to the other. E.g., in Fig. 8, input lane 1 stores the

4 × 4 green sub-image (indexes 1 to 16); to produce output

pixel index 3, it needs to read some of the inputs from the red

sub-image. After applying brick 1 to the corresponding bricks

of the input sub-image (i.e., to the inputs that need the brick

1 to generate the 2 × 2 output in the above example), bricks

2 to 9 of the current filters are applied to their corresponding

input bricks, as well. Thereafter, we move to the next bricks

(deeper channels) of the sub-image as well as of the loaded

filters. Finally, after processing all the channels, we load the

next batch of the filters (17–32) and repeat the same procedure.

So far, one bit of all the filters (W [7]) is used. Before

repeating the whole procedure with W [6], we examine if

certain PEs can be released. We perform the PE release in the

granularity of a row. All PEs of a row generate the same (i, j)
positions but for different channels. Since the outputs among

the same positions of different channels are more correlated,

we enforce this row-termination during the TermiNETor
calibration. That is, all outputs produced with the PEs of

a row try terminating at the same weight index, which we

call row-termination or group-termination. In particular, the

outputs window generated by a row is small (e.g., 2×2 when

there are 128 filters, or 2× 1 for 256 filters), which keeps the

value correlated.

Once a row is terminated, its input lane loads another sub-

image and starts over with W [7] of filters 1–16 for the new

sub-image. Nevertheless, the weight lanes are shared among

all the rows. Therefore, the other rows might need to continue

processing with W [x �= 7] and cannot supply W [7]. However,

all the weight lanes supply the same filter at a given time. That

is, the terminated row needs to load filters 1–16 with W [7],
and the rest of the rows need to also load filters 1–16, albeit

weight W [x �= 7]. Also, all the rows and PEs use the same

brick index, which facilitates address generation. Therefore, at

the cost of increasing the weight lane size, we use multiple

banks so a weight lane can provide different weight bits when

certain rows advance the other ones. It is straightforward as

the brick index, and hence, the memory address will be the
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same for all rows. Note that the weight lanes are small as they

store a single bit of a filter at a time. We limit the number of

different indexes to three. On the rare occasions that more than

three different weight bits are needed, we halt the outpaced

rows to coordinate the rows.

The number of cycles to process an X×Y ×C input image

by the 8×16 TermiNETor array can be calculated as follows:

cycle count =
X × Y

8
× k1 × k2 × F

16
× C

8
×Wavg (3)

where k1 × k2 is the filters’ kernel size (sliding stride of 1),

F is the number of filters, and Wavg is the average number

of weight bits consumed among the outputs. The 8 in X×Y
8

indicates the number of rows that can independently process

a sub-image, 16 in F
16 corresponds to the number of columns

which enable loading the filters as batches of 16, and 8 in
C
8 denotes the brick size, since we process eight channels at

once.

C. Data Reuse

TermiNETor takes advantage of different types of data

sharing and reusing provided by its architecture and/or

dataflow. Since a weight lane is shared among all the PEs

within the corresponding column, a weight fetched from

these memories will be used with multiple PEs of a column.

The same also holds for the input activation lanes, i.e., the

activations of a lane are broadcast to all 16 PEs of a row. In

addition, a loaded weight brick stays in the PE until all the

input activations that it can use are processed (e.g., in Fig.

8, after loading brick 1, all the sub-image inputs it can use

are fetched in a row-major manner before loading brick 2).

Furthermore, the sub-images that are stored in the input lanes

are used for all filters before evicting, and there is no need to

re-fetch from the DRAM. These activations remain in the input

lanes until all the filters are processed. A difference between

input bricks and weight brick is that a weight brick stays in the

PE’s local register, while new activations are constantly read

from the local input lanes. Note that the input lanes consume

significantly smaller power than DRAM.

Another type of filter reuse that TermiNETor supports is

via batch processing. In the last convolution layers the image

size becomes smaller, e.g., 4×4×C. In such a case most of the

PE rows become unused, but are still supplied with the filters

that are shared across the columns. Hence, they can operate on

different images using their independent input lanes. In batch

processing mode, TermiNETor processes each image layer by

layer before a layer � causes PE underutilization. TermiNETor
saves the inputs of the layer � in the DRAM, processes other

image(s) in the same fashion with full resource usage until

layer �, and continues to process the layer � and subsequent

ones for the stored feature maps by loading multiple of them

at a time. This helps to maximize PE utilization with a small

increase of the embedded DRAM size as only one (and small)

layer per image needs to be temporarily stored.

++

A0[7:0]0
A7[7:0]0

W0[x]

W7[x]
reg W[x]

Register 
File

≪ x
Fig. 9. A processing element (PE) of TermiNETor.

D. Processing Elements

TermiNETor benefits from uncomplicated processing ele-

ments, which is shown in Fig. 9. As explained in subsection

III-B, a brick of eight different weights, one bit of each, is

loaded into the PE and is applied on all required bricks of

the row sub-image. Therefore, an eight-bit register stores the

8 × 1 bit weights. At each cycle, eight 8-bits activations are

read from the input lane and broadcast into the PEs. We only

latch these activations at the output of the lane SRAM using

8 × 8 flip-flops which drive the whole row; hence, no input

register is needed in the PE. The 32-words RF accumulates the

partial sums associated with the PE (e.g., for eight filters, four

outputs per each). The address of the RF row, input from the

controller, depends on which of the assigned filters and outputs

are being processed. The 0 ≤ x ≤ 7 denotes the weight bit

index that is being processed and determines the amount of

shifts.

Upon termination signal after a certain weight bit index,

the content of the RF is transferred to the output lanes. For

implementation purposes (to make the RFs compact), we share

a 4× wide RF between four PEs. Therefore, as shown in Fig.

7, an output lane is shared between several columns, and the

links between PEs in a row show writing the computation

result in the shared RF (note that RFs use the same address).

IV. EXPERIMENTAL RESULTS

A. General Setup

We implemented the algorithmic flow of TermiNETor,
i.e., bit-level mask and threshold generation, early convolu-

tion termination, and calibration (including enforcing row-

termination) using PyTorch. For training, we used SGD op-

timizer, momentum of 0.9 with weight decaying, and learning

rate from 0.1 down to 0.0002 over 100 epochs. To recap, the

weights and activations are quantized to eight bits and the

convolution operation is implemented by bitwise shift-and-add

operations. Using the pretrained model, we derive the layer-

wise bit index T at which the dynamic mask (for ineffectual

output predictions) generation starts. Our experiments showed

that the mask generation can start after consuming the first

three bits (towards MSB) for most of the layers. For certain

layers (e.g., layer 4 of VGG16 on CIFAR-100), we can start

the mask generation after consuming the first two bits of

weights.

We implemented the TermiNETor accelerator in Sys-

temVerilog and verified its functionality using Modelsim. We

used Synopsys Design Compiler O-2018.06 to synthesize the

RTL code, and Cadence Innovus 2019 for placement and
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TABLE I
ACCURACY AND OPERATION COMPARISON OF TermiNETor WITH BASELINES.

 
Network 

Accuracy Operation (M) 
Base SeerNet 4-bits TermiNETor Base SeerNet 4-bits TermiNETor 

 

VGG16 91.65% 91.30% 90.82% 91.52% 314 262 (1.20×) 157 (2×) 187 (1.68×) 
ResNet18 93.81% 93.38% 93.02% 93.56% 555 499 (1.11×) 277 (2×) 384 (1.45×) 
ResNet50 94.58% 93.20% 93.24% 94.08% 1298 1103 (1.18×) 649 (2×) 885 (1.47×) 

 

VGG16 70.40% 70.12% 69.01% 70.07% 318 267 (1.19×) 159 (2×) 191 (1.66×) 
ResNet18 75.41% 74.96% 73.15% 75.13% 555 492 (1.13×) 277 (2×) 381 (1.46×) 
ResNet50 77.30% 76.84% 75.12% 77.01% 1298 1056 (1.23×) 649 (2×) 893 (1.45×) 

 
VGG16 56.91% 56.04% 55.15% 56.84% 1256 1017 (1.24×) 628 (2×) 833 (1.51×) 

ResNet18 61.84% 61.01% 59.92% 61.66% 2222 1990 (1.12×) 1111 (2×) 1568 (1.42×) 
ResNet50 64.13% 63.32% 61.90% 64.02% 5194 4672 (1.11×) 2597 (2×) 3685 (1.41×) 
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Fig. 10. Post-placement and routing layout of TermiNETor accelerator,
implemented in TSMC 40 nm technology.

routing using TSMC 40 nm 0.9V library (using a combination

of HVT and RVT) for the typical (TT) process corner. We used

TSMC 0.8V high-performance memory compiler to generate

the dual-port register file (for PEs) and single-port SRAMs (for

input activation lanes, weight lanes, and output lanes). Thanks

to the simplicity of the processing elements, TermiNETor
could achieve an operating frequency of 1 GHz. We used the

post placement and routing netlist to report the area and power

using Design Compiler. To calculate the DRAM access energy,

we used Destiny [23] to generate a 32 MB (128 bit words)

eDRAM model for 40 nm and added the DRAM power based

on its aggregate read and write throughput. The 32 MB DRAM

can store the whole input/output feature maps of any layer, as

well as the model weights.

Fig. 10 illustrates the post placement and routing layout

of the baseline TermiNETor (8 × 16 array), which occupies

0.95 mm2. Each of the eight rows are divided into groups of

four PEs, that share a wide register file. The input activations

memories (left), weight memories (top), and output memories

(bottom) are also visible.

B. Operation Reduction

We evaluate the algorithmic effectiveness of TermiNETor
by comparing it with SeerNet [16], which is a two-stage

ineffectual output predictor. The first stage of SeerNet uses

a 4-bits quanitized inference for mask generation, and then

it uses the generated mask for full-precision (8-bit) inference

as the second stage. The performance improvement, defined

as effective operations, is reported with respect to the 8-bits

baseline implementation (multiplication of a w-bits weight

is considered as w
8 of a 8-bits weight multiplication). We

also include the performance and accuracy metrics for the

4-bit weight quantization (which uses 1
2 effective operations

compared to 8-bits weights). In our evaluation, we considered

VGG16, ResNet-18, and ResNet-50 networks using CIFAR-

10 and CIFAR-100 datasets, as well as a 200-class subset of

ImageNet (Tiny ImageNet).

Table I summarizes the accuracy and effective operation

count for the aforementioned models and datasets. The Base,

SeerNet and 4-bit columns represent the baseline 8-bit quan-

tized model, SeerNet inference [16] and 4-bit quantized mod-

els. SeerNet, which is only software-centric optimization, does

not reuse the computations performed in the mask generation

stage (4-bits inference), leading to computation overhead.

This overhead in computation nullifies the gains of skipping

ineffectual outputs when the output sparsity is less than 50%.

It is worth noting that the results presented in SeerNet [16] do

not account for the computations performed in the first phase

(mask generation). In the following we summarize the results

of different datasets.

CIFAR-10: As compared to the baseline VGG16 network,

while SeerNet achieves 1.20× operation reduction with 0.35%

accuracy loss, our method offers 1.68× reduction with only

0.13% accuracy loss. For residual networks such as ResNet-18,

while SeerNet’s speedup is 1.11×, our method offers 1.45×
improvement with better accuracy. We observe a similar trend

for ResNet50; 1.47× speedup in TermiNETor versus 1.18×
of SeerNet, and 0.88% higher accuracy. Since down-sampling

in residual networks is manly implemented using a stride-2

convolution, the sparsity of output activation is low, leading

to low speedup values in the residual networks as compared

to VGG16. Although the 4-bit model offers 2× speedup, it

suffers accuracy loss of up to 1.34%.

CIFAR-100: For CIFAR-100, we achieve 1.66× speedup in

operation count using VGG16, 1.46× using ResNet-18, and

1.45× on ResNet50, which are on average 34% higher than

SeerNet, with 0.1% higher accuracy. The 4-bit quantization

offers 2× speedup, but incurs 1.94% accuracy loss (versus

0.3% of our approach).

TinyImageNet: We observe a similar trend with the Tiny

ImageNet dataset. Along with an improved operation reduction

(up to 1.51× speedup) compared to the baseline, our im-

provements are 25.2% better than SeerNet with 0.72% higher

accuracy (only 0.12% drop compared to the 8-bits baseline).

The 4-bits quantized models offer a constant 2× operation
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TABLE II
OPERATION REDUCTION WITH ∼2% ACCURACY BUDGET.

 
Network 

Accuracy Operation (M) 
Base TermiNETor Base TermiNETor 

 

VGG16 91.65% 89.90% 314 96 (3.27×) 
ResNet18 93.81% 91.61% 555 214 (2.59×) 
ResNet50 94.58% 92.33% 1298 496 (2.62×) 

 

VGG16 70.40% 68.16% 318 98 (3.24×) 
ResNet18 75.41% 73.11% 555 219 (2.53×) 
ResNet50 77.30% 75.16% 1298 503 (2.58×) 

 

VGG16 56.91% 54.94% 1256 502 (2.50×) 
ResNet18 61.84% 59.86% 2222 958 (2.32×) 
ResNet50 64.13% 62.12% 5194 2144 (2.42×) 
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reduction. However, 4-bits models suffer an accuracy loss of

up to 2.2%. Accordingly, we allowedTermiNETor to undergo

an accuracy degradation of up to ∼2.2% (similar to 4-bits

models) by starting the mask generation early in the bit-serial

processing of the weights as well as using more aggressive

threshold values. With up to 2% accuracy loss as compared

to the 8-bits baselines, we observe an operation reduction of

upto 3.3× for VGG16 with CIFAR-10 dataset as compared

to 2× speedup of the 4-bit model. As shown in Table II,

TermiNETor achieves better speedup values for other datasets

and networks, compared to the 4-bit models.

C. TermiNETor Accelerator Evaluation

Table III presents the characterization of TermiNETor
hardware components. Each PE has a 32× 20 bit register file,

but as as mentioned in Section III-D, we merge the RFs of four

PEs in a row and share a 32×80 bit RF among all. Considering

8-bits weights and activations, 20-bits words are sufficient to

accumulate all partials (as most of the products cancel out each

other). The entire array needs 32 × 20 b × 8 × 16 = 10KB

of register file. To avoid DRAM stalls when flushing out the

output activations from RFs, we use intermediate output lanes

consisted of four SRAMs, each of which has a size of 1 KB

(256 × 32-bits). We stall new computations in the architecture

during the data transfer from the RFs to the output lanes, which

takes 32×8 = 256 (an output lane is shared between all eight

rows). In networks such as ResNet-18 and ResNet-50, this

stall is utilized to perform residual layer addition.

The 8×16 architecture of TermiNETor occupies a total

area of 0.95 mm2 (at 40 nm), consumes 4.0 mW leakage

power, an average dynamic power of 222.5 mW (at 1 GHz),

9.2% of which is the DRAM access power (average among

benchmarks). The baseline 8 × 16 array of TermiNETor
is able to process 12.2 ImageNet-size (224 × 224 images)

implementing VGG16 (large image and network), or 235

smaller 32 × 32 images running ResNet-18 (small image

and network). Fig. 11 shows how the throughput scales by

TABLE III
CHARACTERIZATION OF TermiNETor COMPONENTS.

Module (total) Size/count Area (μm2) Power (mW)
Processing Element 8× 16 81,263 42.8

Activation Memory 16 KB 281,636 59.1

Weight Memory 18 KB 271,596 15.2

Output Memory 4 KB 75,163 1.9

Register File 10 KB 233,987 78.2

Controller 1 9,258 4.78
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Fig. 11. Scalability of performance, area, power, and utilization of
TermiNETor running different image sizes.

increasing the TermiNETor accelerator size up to 32 × 32
array. The baseline is shown by 1.0× (which denotes 12.2

image/second for VGG16, and 235 image/second for ResNet-

18 as mentioned). The largest array, i.e., 32 × 32, which

consists of 8× more PEs, can increase the performance by

up to 7.86×, which is almost linear with the number of PEs

added.

The same Fig. 11 also shows the area sociability, which

is independent of image size. While the baseline area is

0.95 mm2 (denoted by 1.0×), the area of the largest array

(32 × 32) is only 5.04× larger (i.e., 5.04 × 0.95mm2 =
4.79mm2). The area increase is < 8× because although the

PE count is increased by 8×, the number of input lanes of the

32×32 array is only 4× of the baseline array, and the number

of weight and output lanes increases by just 2×. A similar

trend can be observed for the power consumption. As alluded

above, the leakage and dynamic power of the baseline array is

4.0 mW and 222.5 mW, respectively. The energy consumption

reduces by increasing the array size due to better data reuse,

i.e., the same weights and inputs are shared among more PEs,

and a result, SRAM accesses are reduced. PE utilization is

lower for ResNet-18 than VGG16 due to the residual layers,

which have a 1×1 kernel that enables the output lane to

process more filters at the expense of activations. For residual

layers with larger number of input channels (≥ 512), there

are a limited number of activations to start with, and early

termination combined with the low capacity of the output

buffer diminishes it even further. It results in a PE rows

remaining unused for a significant time.

D. Comparison with Previous Work

Since the performance and power consumption depends on

the resources (e.g., PE array size), we compare TermiNETor
with state-of-the-art works in terms of energy consumption

per classification. Particularly, the results of subsection IV-C

showed that the performance of TermiNETor scales well with

the PE array size; hence, high performance targets can be
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meet if the energy consumption is satisfactory. Therefore,

we compare the energy consumption of TermiNETor (for

both baseline 8 × 16 and larger 32 × 32 array, as well as

the baseline baseline 8 × 16 without early termination) with

SCNN [9], Cambricon-S [11], and FuseKNA [24]. The former

two (SCNN and Cambricon-S) are zero weight/input skipping

accelerators without bit-serial operations (i.e., sparsity-aware

8-bits accelerators), while FuseKNA skips zero inputs as well

as repetitive computations using bit-serial operations. The

results of SCNN, Cambricon-S, and FuseKNA are presented

in [24] as normalized to Nvidia 1080 GTX GPU; hence, we

repeated the experiments using the same GPU and normalized

the TermiNETor results to the obtained result of GPU.

Fig. 12 compares the energy usage of TermiNETor and

the other accelerators running 224× 224 images on VGG16,

ResNet-18, and ResNet-50, normalized to Nvidia 1080 GTX

Ti GPU. The 32×32 array of TermiNETor achieves the high-

est energy efficiency and reduces the energy consumption by

120.1× over GPU, 1.98× over FuseKNA, 3.84× over SCNN,

and 4.84× over Cambricon-S. Compared to the baseline 8×16
array with (without) early termination, the 32 × 32 array is

1.20× (1.75×) more energy efficient (with ∼5.7× higher

power consumption according to Fig. 11, i.e., ∼1290 mW

versus 226 mW of the baseline TermiNETor array).

V. CONCLUSION

In this work, we introduced TermiNETor that accelerates

CNN inference by performing dynamic convolution termina-

tion for ineffectual output activations. During the weight bit-

serial inference data flow, at every weight bit, we predict

ineffectual output activations resulting from the ReLU and

max-pooling layers. Using these predictions, the donwstream

bitwise shift-and-add convolution operations are continued

only for the useful output activations. We evaluated TermiNE-

Tor across various networks and datasets, demonstrating a

significant reduction in operation count (up to 1.7× speedup)

with negligible loss of accuracy. We also proposed a novel

accelerator that exploits the dynamic bitwise convolution

terminations with an average energy efficiency of 120× as

compared to GPU, and at least 1.98−4.84× with respect to

the state-of-the-art sparsity-aware accelerators.
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